Mechthild Roth / Ralph Nobis / Valentin Stetsiuk / Ivan Kruhlov (Eds)

Transformation processes in the Western Ukraine
Concepts for a sustainable land use
Contents

List of Authors ... 7
Preface ... 13

Introduction

The “Dniester Project” – Targets and Characteristics of the Investigation Area 17
M. Roth, J. Tsaryk, I. Kruhlov and R. Nobis

Transformation Processes in Eastern Europe

Transformation Processes in Middle Eastern and Eastern European Countries. Experiences, Comparisons and their Effects on Rural Areas ... 25
R. Nobis

Special Problems of Transformation in the Ukraine .. 31
Y. Stadnytskyi and R. Nobis

Political Development and Current Problems in Ukraine .. 43
J. Durkot

Alterations in European Landscapes

Forest Landscapes in Europe ... 51
N. Weber

Agricultural Dominated Landscapes .. 61
U. Riecken and G. Kaule

Changes in European River Landscapes ... 67
R. Nobis

The Upper Dniester Basin: Development and Present State of Landscape and Land Use Systems

Geologic and Geomorphologic Overview of the Upper Dniester Basin 75
M. Huhmann and H. Brückner

Natural Geosystems of the Upper Dniester Basin .. 81
I. Kruhlov, B. Mukha and B. Senchyna
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of the Nature Conservation Values of Habitat Types in the Cultural Landscape of the Upper Dnister Basin – Ecotones</td>
<td>277</td>
</tr>
<tr>
<td>R. Nobis, U. Riecken, A. Donning and M. Roth</td>
<td></td>
</tr>
<tr>
<td>Grazing Effects on the Nature Conservation Value of Pastures in the Carpathians</td>
<td>291</td>
</tr>
<tr>
<td>J. Tsaryk, V. Kyyak, I. Horban, I. Tsaryk and O. Reshetlyo</td>
<td></td>
</tr>
<tr>
<td>The Effects of Anthropogenic Changes on Breeding Birds and Amphibians in the Upper Dnister Basin</td>
<td>297</td>
</tr>
<tr>
<td>I. Horban, A. Bokotey, I. Horban and M. Roth</td>
<td></td>
</tr>
<tr>
<td>Protected Areas and an Action Plan for Nature Conservation in the Upper Dnister Basin</td>
<td>309</td>
</tr>
<tr>
<td>S. Stojko</td>
<td></td>
</tr>
<tr>
<td>Ukrainian Tribes in the Ukrainian Carpathians and their Traditions</td>
<td>321</td>
</tr>
<tr>
<td>V. Stetsiuk</td>
<td></td>
</tr>
<tr>
<td>Social and Demographical Aspects in Rural Areas of Carpathians and Precarpathians</td>
<td>329</td>
</tr>
<tr>
<td>B. Bosch, V. Kravtsiv and W. Endlicher</td>
<td></td>
</tr>
<tr>
<td>The Natural Potential and Problems of Sustainable Development of the Carpathian Region</td>
<td>341</td>
</tr>
<tr>
<td>I. Kolodyuchek</td>
<td></td>
</tr>
<tr>
<td>Sectoral Concepts for Sustainable Land Use Systems and Integrative Planning</td>
<td></td>
</tr>
<tr>
<td>Goals of Landscape Development and Nature Conservation</td>
<td>345</td>
</tr>
<tr>
<td>G. Rosenthal, I. Yatsiv, I. Horban, V. Kravtsiv, M. Roth and R. Nobis</td>
<td></td>
</tr>
<tr>
<td>Perspectives of a Sustainable Forestry from Ecological and Economical Points of View</td>
<td>355</td>
</tr>
<tr>
<td>Scaled Agro-ecological Classification of the Ukraine AEC-UA</td>
<td>371</td>
</tr>
<tr>
<td>M. Kit, B. Holz and I. Slipakivska</td>
<td></td>
</tr>
<tr>
<td>The Sustainability of Agricultural Land Use</td>
<td>389</td>
</tr>
<tr>
<td>Opening up Additional Branches of Agriculture: Recommendations for the Model Communities</td>
<td>409</td>
</tr>
<tr>
<td>I. Yatsiv</td>
<td></td>
</tr>
<tr>
<td>Economic Use of Ecotones with High Nature Conservation Value</td>
<td>419</td>
</tr>
<tr>
<td>R. Nobis, U. Riecken, I. Yatsiv and I. Horban</td>
<td></td>
</tr>
<tr>
<td>Concepts of the Sustainable Water Use and Flood Protection in the Upper Dnister Floodplain</td>
<td>431</td>
</tr>
<tr>
<td>I. Kovalchuk, J. Quast, A. Mykhnovych, J. Steidl, V. Ehlert and Y. Andreychuk</td>
<td></td>
</tr>
<tr>
<td>From Sector Evaluation to Integrated Land Use Planning</td>
<td>441</td>
</tr>
<tr>
<td>G. Kaule and B. Holz</td>
<td></td>
</tr>
<tr>
<td>The Potential of Tourism in Western Ukraine</td>
<td>473</td>
</tr>
<tr>
<td>W. Kahrt</td>
<td></td>
</tr>
</tbody>
</table>
General Framework and Technical Tools for the Implementation of Sustainability Concepts in the Western Ukraine

Legislative and Administrative Structures in Ukraine in the Context of the Implementation of Concepts for Sustainable Land Use ... 491
V. Kravtsiv

The Future Development of Agriculture in the Western Ukraine: Ukraine Joining the WTO and European Integration ... 499
I. Yatsiv

The Adaptation of Ukrainian Legislation to the Law of the European Union with Regard to Environmental Protection ... 509
W. Kuhrt

Regional-political Structures and Administrative Organisation in Ukraine ... 523
V. Kravtsiv and M. Dolishniy

The Dnister GIS: Design, Applications and Proposal in Regard to its Further Implementation and Development ... 529
E. Tcherkezova

References ... 541
Subject index ... 579
Contents of the CD ... 599
List of Authors

Dr. Y. Andreychuk
Ivan-Franko National University Lviv
Chair of Constructive Geography and Cartography
vul. Doroshenka 41
79000 Lviv
Ukraine

Prof. Dr. A. W. Bitter
Technische Universität Dresden
Institute of Forest Management and Planning
Piennerstraße 23
01735 Tharandt
Germany
abitter@rcs.urz.tu-dresden.de

Dr. Oleksandr Bitter
National University of Agriculture Lviv
Chair of Statistic and Analysis
Dubliany
Zhovkva district
80381 Lviv region
Ukraine

Dr. Andriy Bokotey
Natural History Museum
Ukrainian National Academy of Science
vul. Teatralna 18
79008 Lviv
Ukraine
zuot@org.lviv.net

Prof. Dr. Myroslav Bomba
National University of Agriculture Lviv
Chair of Agriculture
Dubliany
Zhovkva district
80381 Lviv region
Ukraine

Dr. Barbara Bosch
Humboldt-Universität zu Berlin
Institute of Geography
Unter den Linden 6
10099 Berlin
Germany
barbara.bosch@gmx.de

Dipl.-Forstwirt. Nadine Bräsicke
Technische Universität Dresden
Institute of Forest Botany and Forest Zoology
Piennerstraße 7
01737 Tharandt
Germany
nadine.braesicke@web.de

Dr. Liubomyr Buhryn
Institute of Agriculture and Livestock Farming of Western Ukraine
Ukrainian National Academy of Science
Obroshyno
Pustomyty district
81115 Lviv region
Ukraine
sbs@stat.lviv.ua

Dr. Bohdan Bulka
Institute of Agriculture and Livestock Farming of Western Ukraine
Ukrainian National Academy of Science
Obroshyno
Pustomyty district
81115 Lviv region
Ukraine
sbs@stat.lviv.ua
Transformation processes in the Western Ukraine – Concepts for a sustainable land use
Dr. Ihor Horban
Ivan-Franko National University Lviv
Chair of Zoology
vul. Hrushevskoho 4
79005 Lviv
Ukraine
ihorban@yahoo.com

Liubov Horban
Nature Reserve „Roztochia“
Ivano-Frankove
Yavoriv district
80004 Oblast Lviv region
Ukraine
zaproz@mail.lviv.ua

Dr. Mirko Huhmann
Philipps-Universität Marburg
Institute of Geography
Deutschhausstraße 10
35032 Marburg
Germany
m.huhmann@emac.ch

Prof. Dr. Giselher Kaule
University Stuttgart
Institute of Landscape Planning and Ecology
Keplerstraße 11
70174 Stuttgart
Germany
gk@ilpoe.uni-stuttgart.de

Prof. Dr. Myron Kit
Ivan-Franko National University Lviv
Chair of Soil Science and Soil Geography
vul. Doroshenka 41
79000 Lviv
Ukraine
dl_ekozem@franko.lviv.ua

Dr. Ihor Kaprus
Natural History Museum
Ukrainian National Academy of Science
vul. Teatralna 18
79008 Lviv
Ukraine
i-kaprus@museum.lviv.net

Prof. Dr. Pavlo Kazmir
National University of Agriculture Lviv
Chair of Land Use Projecting
Dubliany
Zhovkva district
80381 Lviv region
Ukraine
pkazmir@ukr.net

Dipl. Ing. Liubomyr Kazmir
Institute of Regional Development and Policy
Ukrainian National Academy of Science
vul. Kozelnyska 4
79026 Lviv
Ukraine
box5@ukr.net

Prof. Dr. Dr. Myron Kit
Ivan-Franko National University Lviv
Chair of Soil Science and Soil Geography
vul. Doroshenka 41
79000 Lviv
Ukraine
dl_ekozem@franko.lviv.ua

Dipl.-Forstwirt Björn Koffinke
Technische Universität Dresden
Institute of Forest Management and Planning
Piennerstraße 23
01735 Tharandt
Germany
björnkoffinke@aol.com

Dr. Iryna Kolodiychuk
Institute of Regional Development and Policy
Ukrainian National Academy of Science
vul. Kozelnyska 4
79026 Lviv
Ukraine

Dr. Egbert Korte
Office for Ecological Studies on Fish
Plattenhof
64560 Riedstadt-Erfelden
Germany
bfs-korte@web.de
Transformation processes in the Western Ukraine – Concepts for a sustainable land use
Prof. Dr. Stepan Poznyak
Ivan-Franko National University Lviv
Chair of Soil Science and Soil Geography
vul. Doroshenka 41
79000 Lviv
Ukraine
kfgeogrunt@franko.lviv.ua

Prof. Dr. Joachim Quast
Leibniz Centre for Agricultural Landscape Research (ZALF) e.V.
Institute of Landscape Hydrology
Eberswalder Straße 84
15374 Müncheberg
Germany
jquast@zalf.de

Dr. Ostap Reshetylo
Natural History Museum
Ukrainian National Academy of Science
vul. Teatralna 18
79008 Lviv
Ukraine
reshetylo@yahoo.com

Rainer Ressl
DLR German Remote Data Center (DFD)
Kalkhorstweg 53
17235 Neustrelitz
Germany
rainer.ressl@conabio.gob.mx

Dr. Uwe Riecken
German Federal Agency for Nature Conservation (BfN)
Konstantinstraße 110
53179 Bonn
Germany
uwe.riecken@bfn.de

Dr. Volodymyr Rizun
Natural History Museum
Ukrainian National Academy of Science
vul. Teatralna 18
79008 Lviv
Ukraine
rizun@museum.lviv.net

PD Dr. habil. Gert Rosenthal
University Stuttgart
Institute of Landscape Planning and Ecology
70174 Stuttgart
Germany
gr@ilpoe.uni-stuttgart.de

Prof. Dr. Mechthild Roth
Technische Universität Dresden
Institute of Forest Botany and Forest Zoology
Piennerstraße 7
01737 Tharandt
Germany
mroth@forst.tu-dresden.de

Prof. Dr. Dr. h. c. P. A. Schmidt
Technische Universität Dresden
Institute of Land Improvement and Nature Conservation
Piennerstraße 7
01737 Tharandt
Germany
schmidt@forst.tu-dresden.de

Dr. Bogdana Senchyna
Ivan-Franko National University Lviv
Chair of Rational Use and Nature Conservation
vul. Doroshenka 41
79000 Lviv
Ukraine

Dr. Iryna Shpakivska
Institute of Ecology of the Carpathians
Ukrainian National Academy of Science
vul. Kozelnyska 4
79026 Lviv
Ukraine
ecology@city-adm.lviv.ua
ishpakivska@ukr.net

Prof. Dr. Yuriy Stadnytskyi
Institute of Regional Development and Policy
Ukrainian National Academy of Science
vul. Kozelnyska 4
79026 Lviv
Ukraine
The cooperation of German and Ukrainian nature scientists has a long tradition and a changeful history. During the Soviet regime contacts of Ukrainian scientists with research institutes of e.g. Western Europe had been restricted and were strongly controlled. With the political changes, initiated by Gorbatchov’s “Perestrojka” also the scientific communication started to increase. On the environmental sector especially the nuclear catastrophe of Chernobyl promoted the need for an exchange of knowledge. As a consequence of radioactive environmental contaminations the Soviet government agreed also to the foundation of non-governmental organisations.

One of the first, that was founded in Ukraine in 1987 was Tovarystvo Lewa. Due to severe pollutions of the Dnister in Western Ukraine caused by emissions of a chemical plant some years ago, Tovarystvo Lewa focused their activities also on the protection of this river ecosystem. To receive international public awareness this NGO organised since 1988 nature conservation expeditions on the river Dnister. One guidance of this expeditions carried out by float was Valentin Stetsyuk.

In 1993, Stephan Niemeier, a German activist of environmental movements and a student of nature conservation at Philipps-Universität Marburg participated in this expedition and met with Valentin Stetsyuk. This meeting was the starting point for a long lasting personal friendship and gave rise to the idea of a German-Ukrainian research-project on the ecology of the river Dnister. Returning back to Marburg with enthusiastic feelings for the unique landscape of the Dnister valley it was easy for Stephan Niemeier to convince his supervisor, Prof. Dr. Harald Plachter, who is always fascinated by the idea to make impossible things possible, of the realisation of a binational nature conservation project. Without doubt, it is the honourable merit of Harald Plachter to give the idea of a German-Ukrainian research-project first scientific contents and above all to open up the necessary financial resources for the realisation of a nature conservation research project in the Western Ukraine. Thus, in 1995 a pilot study, financed by the “Stifterverband für die deutsche Wissenschaft” and supported by the “Ukrainian Ministry of Nature Conservation” started. Due to the successful results of the pilot project, Harald Plachter succeeded to spark the interest of the German Ministry of Education and Research in the German-Ukrainian scientific cooperation.

Starting with April 1997 the German Ministry of Education and Research funded the binational interdisciplinary research-network with three phases (Tab. I). Thus, the editors and all other co-workers are indebted to the BMBF. Without the financial support, it would not have been possible to realise the project. Special tribute has to be payed to Beate Schütze, Dr. Ingo Fitting, Katharina Sempf and Dr. Joachim Kutscher from the Project Management Organisation Jülich in the Jülich Research Centre for their efforts in realising the research project. The research project was run under the patronage of the UNESCO. We have to express our gratitude to Mr. Vefa Moustafaev and Mr. Mustafa El Tayeb.

Additional support was given by the German Academic Exchange Service (DAAD), which is greatfully acknowledged.

The results of the first two project phases, that were run under the coordination of Philipps-Universität Marburg, documented the unique value of the cultural landscape of the Dnister valley, which is caused by manifold landscape attributes and a high level of biodiversity. On the other hand the transformation processes starting in the 90s have lead to severe alterations of economical condi-
Transformation processes in the Western Ukraine – Concepts for a sustainable land use and put high pressure on the ecological status of the landscape. Thus, it was a big challenge for a collective of Ukrainian and German scientists to develop in the third project phase, that was coordintated by Technische Universität Dresden, sustainability concepts for selected model regions of the rural landscapes of the Dnister catchment. Besides Dr. Winfried Kuhrt, Berlin (former Senior Legal Secretary, Ministry of the Environment, Lower Saxony), numerous Ukrainian and German scientists from the following institutions contributed to the results of the third project phase, that are published in this book:

Technische Universität Dresden:
- Institute of Forest Management and Planning: Prof. Dr. Andreas Walter Bitter, Prof. Dr. Norbert Weber, Björn Koffinke, Jenny Postler
- Institute of Forest Botany and Forest Zoology: Nadine Bräsicke, Michael Elmer, Gisela Förster, Ralph Nobis, Prof. Dr. Mechthild Roth
- Institute of Land Improvement and Nature Conservation: Thomas Glaser, Prof. Dr. Dr. h. c. Peter Adam Schmidt

German Aerospace Center (DLR):
- German Remote Sensing Data Center (DFD), Neustrelitz: Erik Borg, Steffi Lehmann, Rainer Ressl

German Federal Agency for Nature Conservation:
- Dr. Uwe Riecken

Technische Universität Dresden:
- Institute of Forest Management and Planning: Prof. Dr. Andreas Walter Bitter, Prof. Dr. Norbert Weber, Björn Koffinke, Jenny Postler
- Institute of Forest Botany and Forest Zoology: Nadine Bräsicke, Michael Elmer, Gisela Förster, Ralph Nobis, Prof. Dr. Mechthild Roth
- Institute of Land Improvement and Nature Conservation: Thomas Glaser, Prof. Dr. Dr. h. c. Peter Adam Schmidt

Humboldt-Universität zu Berlin:
- Institute of Geography: Dr. Barbara Bosch, Prof. Dr. Wilfried Endlicher

Ivan-Franko National University Lviv:
- Chair of Physical Geography: Dr. Ivan Kruhlov, Dr. Bohdan Mukha
- Chair of Soil Sciences and Soil Geography: Prof. Dr. Myron Kit, Prof. Dr. Stepan Pozniak
- Chair of Zoology: Dr. Ihor Horban, Volodymyr Lesnik, Prof. Dr. Yosyp Tsaryk,
- Chair of Constructive Geography and Cartography: Prof. Dr. Ivan Kovalchuk, Dr. Andriy Mykhnovych, Y. Andreychuk
- Chair of Rational Use and Nature Conservation: Dr. Bogdana SENCHyna

Leibniz Centre for Agrarian Landscape Research (ZALF), Müncheberg:
- Institute of Landscape Hydrology: Prof. Dr. Joachim Quast, Dr. Jörg Steidl, Dr. Volker Ehler

Lviv City Administration:
- Maxim Morus, Dr. Stepan Yamelynets, Dr. Taras Yamelynets

State Forestry Union LvivLis:
- Dr. Anatoli M. Deineka

National University of Agriculture Lviv:
- Chair of Agriculture: Prof. Dr. Myroslav Bomba
- Chair of Land Use Projecting: Prof. Dr. Pavlo Kazmir

Tab. 1: Phases and targets of the German-Ukrainian BMBF-UNESCO research project “Transformation processes in the Dnister Area (Western Ukraine) – Concepts for sustainable land use”

<table>
<thead>
<tr>
<th>Phase</th>
<th>Duration</th>
<th>Project title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st phase</td>
<td>April 1997 – August 1998</td>
<td>Ecological analysis and evaluation of the nature conservation value of the Upper Dnister Basin as a model for the development of a river landscape</td>
</tr>
<tr>
<td>3rd phase</td>
<td>October 2001 – December 2005</td>
<td>Transformation processes in the Dnister area (Western Ukraine) – Transfer and implementation of the results into land use planning – FKZ: 03339699D</td>
</tr>
</tbody>
</table>
Preface

Chair of Regional Planning:
Dr. Myron Drozdiak†

Chair of Statistic and Analysis:
Dr. Oleksandr Bitter, Dr. Ihor Yatsiv

National University of Forestry and Wood Technology Lviv:
Chair of Ecology: Dr. Mykola V. Cherniavskyi
Chair of Landscape Architecture, Horticulture and Urban Ecology: Dr. Yaroslav V. Henyk

Office for Ecological Studies on Fish, Riedstadt-Erfelden:
Dr. Egbert Korte

Office for Landscape Planning and Ecology, Stuttgart:
Brigitte Holz

Philipps-Universität Marburg:
Institute of Geography:
Prof. Dr. Helmut Brückner, Dr. Mirko Huhmann

Tovarystvo Lewa:
Dipl.-Ing. Valentin Stetsyuk

Ukrainian National Academy of Science:
Institute of Agriculture and Livestock Farming:
Dr. Liubomyr Bugryn, Dr. Bohdan Bulka
Institute of Ecology of the Carpathians:
Dr. Mykola Kozlowsky, Dr. Volodymyr Kyyak, Prof. Dr. Dr. h. c. Stepan Stoiko, Dr. Inna Tsaryk, Dr. Irina Shipakivska, Dr. Pavlo T. Yashchenko, Vasyl Tavornytskyy
Institute of Regional Development and Policy:
Prof. Dr. Maryan Dolischniy, Dr. Liubomyr Kazmir, Dr. Irina Kolodiychuk, Dr. Vasil Kravtsov, Prof. Dr. Yuriy Stadnytskyi,
Natural History Museum:
Dr. Andriy Bokotey, Dr. Ihor Kaprus, Dr. Volodymyr Melamud, Dr. Ostap Reshetlyo, Dr. Volodymyr Rizun, Dr. Lidia Tazenkevych

University Stuttgart:
Institute of Landscape Planning and Ecology:
Prof. Dr. Giselher Kaule, Dr. habil. Gert Rosenthal, Dr. Hans-Georg Schwarz-v. Raumer, Dr. Emilia Tcherkezova

The implementation of the results in land use planning was supported by a variety of Ukrainian authorities. Special tribute has to be paid to:
National Ministry of Education and Science;
National Academy of Sciences;
Oblast Lviv State Administration;
Oblast Lviv Authority of Ecology and Nature Ressources;
Oblast Lviv Authority of Soil Resources;
Oblast Lviv Authority of Hydrology;
Lvivls – State Department of Forestry.

A lot of other persons contributed to the successful publication of this book. Thus, we have to thank Wieland Schmidt (TU Dresden) for his translations of several chapters of the book in English language and Dennis O’Connell (Executive Language Services, Stuttgart) for proof reading the English manuscripts. A lot of layout-work was done by Gisela Förster, Carolin Werthschütz and Richard Georgi. Moreover we have to pay tribute to Natalia Weselowska and Olessia Stepanysyn who did an excellent work in the project office in Lviv and as interpreters of all German-Ukrainian communications.

The same applies to the GIS-working group in Lviv (Dr. Stepan Yamelynets, Dr. Taras Yamelynets, Maxim Morus).

Finally I would like to dedicate this book to the late Dr. Myron Drozdiak and Dr. Hans-Erich Gramatzki. With his profound knowledge on crop cultivation Dr. Drozdiak gave essential ideas for the development of sustainability concepts in agriculture. Dr. Hans-Erich Gramatzki made helpful suggestions for structuring the socio-economic part of the project.

On behalf of the editors
M. Roth
The “Dnister Project” – Targets and Characteristics of the Investigation Area
M. Roth, J. Tsaryk, I. Kruhlov and R. Nobis

As a result of the Earth Summit (UNCED: United Nations Conference on Environment and Development) held in June 1992 in Rio de Janeiro, 170 countries have signed the Agenda 21, a wide ranging action plan to improve the conditions of the environment and to ensure the sustainable development based on the rational use of natural resources. A basic approach of the Agenda 21 for a development that meets the needs of the present without compromising the ability of future generations to meet their own needs is the integration of environmental aspects in all other fields of politics. Thus, a sustainable development has to be based on the harmonisation of ecological, economical and social factors of development.

In economically well developed countries the guidelines for the future development which is in accordance with the needs of sustainability are mostly defined. Partly due to the long lasting and complex processes of restructuring economy and administration transformation countries are still standing at the beginning of the process which results in the implementation of principles of sustainability in the further development of the society.

This applies for Ukraine too, despite the fact that on the national level several laws and ordinances of the ministerial cabinet and the president concerning the sustainable development have been passed. Their successful implementation on subordinate geographic levels depends to a large part on the regional and local peculiarities of the transformation processes that occur in society, economy and policy as well as on the ac-

![Diagram](image)
ceptance by local, regional and national decision makers and state-run financial support. Moreover, one of the most important factors that cause the slow pace of the implementation process is the lack of scientifically based concepts for the sustainable use of natural resources which simultaneously ensure the economic wealth of the population. Of special importance in this context are the rural cultural landscapes of Ukraine that are characterised by agricultural use and forestry and on the other hand a high nature conservation value and that will probably undergo severe alterations due to an increasing influence of a global market economy.

Based on a broad spectrum of scientifically assessed data on natural site conditions (e.g. geology, hydrology, and climate), botanical and fauna biodiversity, land use systems, and socio-demography, the German-Ukrainian research-network aimed at the development of concepts for the sustainable development of rural cultural landscapes in the western part of the transformation country Ukraine. The focus of the research project was laid on the effects of the transformation processes on the sectors agricultural land use, forestry and flood regime including their economic aspects. Starting with the aggregation of the ecological, socio-economic and agricultural data regionally differentiated goals for a sustainable land use were developed and harmonised with the scenarios for the future development of Ukraine in an iterative process (Fig. 1). The investigations were carried out in close cooperation with Ukrainian decision makers on the local, regional and national level and with corporate organisations of agriculture and forestry to ensure the practical realisation of the concepts of sustainability. For the evaluation and visualisation of the results a GIS based data base adapted to the investigation area was generated.

The investigation area

To develop recommendations for land use systems that correspond with ecological and nature conservation targets and to evaluate their socio-economic effects the Upper Dnister Basin was selected as model area. With its fluvial topography it is representative for large parts of the Western Ukraine and moreover for other mountainous areas of Central Eastern Europe.

The Upper Dnister Basin is rather conditionally defined by the confluence of the main river (the Dnister) with its small northern tributary, the Koropets. The catchment of the upper Dnister comprises an area of 21,493 km². It constitutes about 30% of the whole Dnister Basin (Kaganer 1969) and 3.5% of the territory of Ukraine. The Upper Dnister Basin is almost completely located in Ukraine, except for the small most westward part of 231 km² in the headwaters of the Stryihor river, which belongs to Poland. The Ukrainian area of the Upper Dnister Basin is assigned to three administrative units: the Oblasts of Lviv (11,017 km²), Ivano-Frankivsk (8,349 km²), and Ternopil (1,896 km²) (Fig. 2).

Fig. 2: Location of the investigation area in the Western Ukraine
Within the Upper Dnister Basin three model regions, representing the classification of natural areas of the western Ukraine were selected (Fig. 3).

Model region 1: Carpathians

The Carpathian model region 1 is divided in model region 1a (lower Carpathian highlands) and 1b (Carpathian highlands).

The model region 1a (MR 1a) is located in the Oblast Lviv. As model community representative for the lower parts of the Carpathians Verkhniy Luzhok was chosen. It consists of two settlements – the villages of Verkhniy Luzhok and Busovysko. The community has about 2,210 inhabitants, occupies an area of 2,278 ha and belongs to the Rayon Staryi Sambir within the Oblast of Lviv. It is located at a distance of about 100 km from Lviv and about 10 km from Staryi Sambir. The community is characterised by a relatively good road and railway connection.

From a natural-geographic point of view, the community is located in the Dnister Beskids low mountain region on both sides of the Dnister river valley. The terrain is characterised by significant elevation spans (368–780 m a.s.l.), steep and very steep slopes dissected by gullies, and moderately cool climate, which caused the formation of brown mountain soils under fir-beech natural forests. Alluvial soils and gravel under willow and alder natural communities occupy the terraced river valley bottom (for more detail see

Fig. 3: Location of the model regions and model communities
Natural Geoecosystems of the Upper Dnister Basin). The natural landcover has been significantly changed during the centuries of economic activities of the local population. Now the area appears to be a semi-open landscape with patches of grassland and arable land in-between the settled and forested sections (Fig. 4; Current Land Use Structure of the Upper Dnister Basin and Recent Changes in the Model Communities).

The model region 1b (MR 1b) includes the model community of Volosianka (2,378 inhabitants) which covers an area of 6,825 ha and includes the
larger village of Volosianka as well as the smaller villages of Yalynkuvate and Hashchovanya. The community belongs to the Rayon Skole of Lviv Oblast and is located at the very periphery of the administrative units – at the border with Transcarpathians and Ivano-Frankivsk Oblasts. The location is a kind of cul-de-sac formed by mountain ridges with only one bad mud road of about 7 km leading to Slavske – a well-known national mountain ski resort and the nearest railway station. The distance is about 150 km to get from Slavske to Lviv and about 25 km to Skole.

The community of Volosianka is located in the internal ecoregion of the Eastern Carpathians called Verchovyna. These are low and middle flysch mountains with the elevation span of 620–1,250 m within the community territory, steep slopes dissected by gullies, and cool climate which caused the formation of brown mountain soils under spruce-beech natural forests (for more detail see Natural Geocosystems of the Upper Dniester Basin). The settlements are located in relatively narrow valleys, and the natural landcover has been significantly changed during the centuries of the economic activities of the local population. On the present day semi-open landscape has patches of grassland and clear-cuts in the matrix of secondary forests with the domination of spruce (Fig. 5; Current Land Use Structure of the Upper Dniester Basin and Recent Changes in the Model Communities).

Model region 2: Precarpathians

The model region of 584 km² is located in Lviv Oblast and embraces the so-called Upper Dnister Depression. Its western part belongs to Sambir and Drohobych Rayons, while the eastern part is shared by Horodok and Mykolaiv Rayons. There are about 40 villages in the region. Lviv is located to the north-east at a distance of about 40 km, whilst there are several towns to the south-west: Sambir, Drohobych, and Stryi.

The model region occupies the wide (up to 8 km) Dnister valley filled with peat and alluvial deposits as well as wavy uplands with gentle slopes and loess cover forming the southern limit of the valley. The uplands are separated by relatively wide (1.5–3 km) secondary river valleys. The elevation span is 240–370 m a.s.l. The natural vegetation is represented by alder forests and wet meadows in the valley bottoms, and by oak-hornbeam forests on the uplands (for more detail see Natural Geocosystems of the Upper Dniester Basin). Today, this is primarily an agricultural region occupied by grassland and arable land.

There are two model communities chosen in the model region: The community of Kolodruby is located at the eastern part of the wide Dnister valley and belongs to Mykolaiv Rayon. It has 1,077 inhabitants and covers an area of 1,736 ha. The distance to Mykolaiv is about 15 km, while to Lviv – about 55 km. The area is rather flat – the elevation span is 250–270 m a.s.l. The soils vary from peat and alluvial silt in depressions to podzolised loamy sand on more elevated parts. The natural vegetation was dominated by oak and alder forests. Today, forests occupy only a small portion of the community land, giving way to grassland and arable land (Fig. 6).

The community of Dubliany has an area of 2,560 ha and a population of 2,300 inhabitants. It is located at the southwestern limit of the model region on the elevated Dnister-Bystrysia Pidbuzhanska interfluve. The community belongs to Sambir Rayon. The distance to Sambir is about 15 km, while to Lviv – about 60 km. The southern part of the community territory is situated in the flat bottom of the Bystrysia Pidbuzhanska valley filled with alluvial silt and peat. The larger northern part is on the interfluve and is composed of loess-like loam with podzolised sod soil. The elevation span is 270–315 m a.s.l. The natural vegetation of the interfluve is oak-hornbeam forest, with oak and alder forests in the valley bottom. Now arable land and grassland replace them (Fig. 7).
This area has 412 km² and is located at the easternmost part of the Upper Dniester Basin. It embraces parts of Pidhaytsi and Monastyryska Rayons of Ternopol Oblast. The towns of Monastyryska and Pidhaytsi are located within the area. The distance to Ternopil from the middle of the area is about 70–80 km. From the physical-geographic point of view, the area is located within the Koropets river basin at the eastern termination of the High Opilia ecoregion. The Koropets and the Dniester are deeply cut into a rolling watershed surface creating canyon-like valleys with steep slopes. The elevation span is 195–405 m a.s.l., and the canyon walls can have relative altitudes of over 200 m. The watershed surfaces have gentle to moderate slopes; they are covered with loess-like loam and occupied by chernozemic podzolised soils. Once they were covered with oak-hornbeam forests, but
now they are used as arable land. The steep slopes of the valleys with calcareous rock outcrops are covered with beech-hornbeam forests (for more detail see Natural Geoecosystems of the Upper Dnister Basin).

Two model communities which are characteristic for the region were chosen. The community of Horyhliady is located at the south in the canyon-like Dnister valley at the confluence with the Koropets. It has an area of 847 ha, and a population size of 1,253 inhabitants. The community belongs to Monastyryska Rayon. The distance to Monastyryska is about 30 km, while to Ternopil – about 110 km. The community occupies gently and moderately sloping low and middle terraces with the elevations of 190–260 m a.s.l. The terraces are covered with loess-like loam that serves as a parent rock to chernozemic soils. Once the region was covered with oak forests, but now the forests are replaced by arable land (Fig. 8).

The community of Olesha (1,150 ha; 641 inhabitants) is situated at the eastern border of the model region. It also belongs to Monastyryska Rayon. The distance to the rayon centre is about 10 km. The village occupies the rolling watershed surface formed by loess-like loam. The elevations are between 350–390 m a.s.l. The oak-hornbeam forests that once covered fertile chernozemic soil were cut long ago and replaced by arable land. Forested patches are preserved only on the steep slopes of the valleys which are not suitable for ploughing (Fig. 9).