Socio-Economic Problems
of the Modern Period of Ukraine

Collection SEPSPU -- sep2019.06.057

Repository of Institute of Regional Research UDC 338:620.91:633; JEL Q42
Hryhoruk, I. (2019). Otsinyuvannya enerhetychnoho potentsialu roslynnykh vidkhodiv sil's'kohospodars'koho pokhodzhennya [Assessment of energy potential of agricultural residues]. In Sotsial'no-ekonomichni problemy suchasnoho periodu Ukrayiny [Socio-Economic Problems of the Modern Period of Ukraine]: Vol. 140 (6) (pp. 57-62). DOI: [in Ukrainian].
Sources: 18


Hryhoruk Iryna Ivanivna

Postgraduate, Lecturer of the Department of management and business administration of the Vasyl Stefanyk Precarpathian National University




The paper deals with the existing approaches to the interpretation of the potential of bioenergy resources. The most widespread practices of differentiation of potentials by foreign and domestic scientists are considered and the increasing role of environmental factors is emphasized. The definition of theoretical, technical, energy, economic and sustainable potentials is given. The paper suggests not to allocate sustainable or environmental potential since there is no information available for accurate calculation in absolute or relative terms. But at the same time, the constraints from the viewpoint of sustainable development at all stages of the calculation have to be taken into account. Agricultural residues are divided into primary ones, that is, those that are generated directly during the harvest, and secondary – generated during the crop processing at the enterprises. The paper establishes that the magnitude of the energy potential is mainly influenced by factors such as competition between the use of residues for energy purposes and the needs of livestock; the possibility of depletion of organic nutrients in the soil by removing the residue of straw from farmland. Practice shows that unused residues in a large enough volume are often burned in fields, which is officially banned in Ukraine and is harmful to the environment and soil. Energy utilization ratios, waste coefficient for each crop type, coefficient of technical availability of waste, energy utilization factor and factor of conversion into conditional fuels are examined and based on them the energy potential of primary and secondary plant wastes are calculated. A significant part is the cereal straw, which remains largely unused, and the corn waste. Due to its energy potential, the magnitude of which exceeds the similar potential of the EU countries, and its accessibility, it has the potential to significantly influence the energy situation in the country.


bioenergy, energy potential, sustainable development, biomass, agricultural residues


  1. Atlas enerhetychnoho potentsialu vidnovlyuvanykh ta netradytsiynykh dzherel enerhiyi Ukrayiny [Atlas of energy potential of renewable and unconventional energy sources of Ukraine] (2010). Kyiv. Retrieved from [in Ukrainian].
  2. Heletukha, H. H., Zhelyezna, T. A., Zhovmir, M. M., Matvyeyev, Yu. B., & Drozdova, O. I. (2010). Otsinka enerhetychnoho potentsialu biomasy v Ukrayini. Ch. 1. Vidkhody sil’s’koho hospodarstva ta derevna [Assessment of biomass energy potential in Ukraine. Part 1. Agricultural waste and wood]. In Promyshlennaya teplotekhnika [Industrial heat engineering]: Vol. 32(6) (pp. 58-65). [in Ukrainian].
  3. Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., & van Vuuren, D. P. (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8, 456-70. DOI:
  4. Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass Bioenergy, 20, 151-159. DOI:
  5. Elbersen, B., Forsell N., Leduc, S., Staritsky, I., Witzke, P., & Ramirez-Almeyda, J. (2017). Existing Modeling Platforms for Biomass Supply in Europe. In Modeling and Optimization of Biomass Supply Chains – Top-Down and Bottom-Up Assessment for Agricultural, Forest and Waste Feedstock. London: Academic Press (pp. 25-54). DOI:
  6. Bentsen, N., & Felby, C. (2012). Biomass for energy in the European Union – a review of bioenergy resource assessments. Biotechnology for Biofuels, 5(1):25. DOI:
  7. Kluts, I., Wicke, B., Leemans, R., & Faaij, A. (2017). Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews, 69, 719-734. DOI:
  8. Batidzirai, B., Smeets, E., & Faaij, A. (2012). Harmonising bioenergy resource potentials – methodological lessons from review of state of the art bioenergy potential assessments. Renewable and Sustainable Energy Reviews, 16(9), 6598-6630. DOI:
  9. Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., & Dong, H., et al. (2011). Chapter 2: bioenergy. In IPCC special report renewable energy sources climate change mitigation. Cambridge: Cambridge University Press (pp. 203-332).
  10. Vis, M., van den Berg, D., Anttila, P., Böttcher, H., Dees, M., & Domac, J., et al. (2010). Harmonization of biomass resource assessments. Vol. 1. Best Practices and Methods Handbook. DOI:
  11. UN World Summit on Sustainable Development (WSSD): Johannesburg Declaration and Plan of Implementation (2002). International Documents on Corporate Responsibility. DOI:
  12. Kraysvitniy, P. A., Paliy, M. V., & Riy O. V. (2012). Otsinka enerhetychnoho potentsialu solomy zernovykh ta holovni aspekty vykorystannya yiyi u bioenerhetytsi [Assessment of the energy potential of cereal straw and main aspects of its use in bioenergy]. In Zbirnyk naukovykh prats’ Vinnyts’koho natsional’noho ahrarnoho universytetu. Seriya: ekonomichni nauky [Proceedings of Vinnytsia National Agrarian University. Series: Economics]: Vol. 1(56) (pp. 193-200). [in Ukrainian].
  13. Dubrovin, V. O., Holub, H. A., Drahnyev, S. V., Heletukha, H. H., & Zhelyezna, T. A. (2013). Metodyka uzahal’nenoyi otsinky tekhnichno-dosyazhnoho enerhetychnoho potentsialu biomasy [Methods of generalized assessment of technically achievable biomass energy potential]. Kyiv: Violprint Ltd. [in Ukrainian].
  14. Heletukha, H. H., & Zhelyezna, T. A. (2014). Svitovyy dosvid vykorystannya vidkhodiv sil’s’koho hospodarstva dlya vyrobnytstva enerhiyi [World experience in using agricultural waste for energy production]. Ekolohiya pidpryyemstva – Enterprise ecology, 3, 56-69. [in Ukrainian].
  15. Holub, H. A. (2011). Problemy tekhniko-tekhnolohichnoho zabezpechennya enerhetychnoyi avtonomnosti ahroekosystem [Problems of technical and technological support of energy autonomy of agroecosystems]. In Zbirnyk naukovykh prats’ Vinnyts’koho natsional’noho ahrarnoho universytetu Seriya: Tekhnichni nauky [Proceedings of Vinnytsia National Agrarian University. Series: Technical sciences]: Vol. 7. (pp. 59-66). Retrieved from [in Ukrainian].
  16. Klymchuk, O. V., & Skoruk, O. P. (2011). Perspektyvni napryamky vyroshchuvannya kukurudzy dlya vykorystannya na enerhetychni potreby [Perspective directions for growing corn for energy use] In Zbirnyk naukovykh prats’ Vinnyts’koho natsional’noho ahrarnoho universytetu. Seriya: ekonomichni nauky [Proceedings of Vinnytsia National Agrarian University. Series: Economics]: Vol. 1(48). (pp. 67-73). Retrieved from [in Ukrainian].
  17. Blahodyr, L. M., & Vyhonyuk, N. H. (2015). Konkurentsiya v oliyno-zhyroviy haluzi Ukrayiny: povedinkovyy i funktsional’nyy aspekty. Visnyk Vinnyts’koho politekhnichnoho instytutu – Bulletin of Vinnytsia Polytechnic Institute, 6, 35-42. [in Ukrainian].
  18. Bondar, V. S. (2013). Tsukrovi buryaky, yak vidnovlyuval’ne dzherelo bioenerhetyky [Sugar beets as a renewable source of bioenergy]. Bioenerhetyka – Bioenergy, 1, 17-21. [in Ukrainian].

Web-master P. Popadyuk